skip to main content


Search for: All records

Creators/Authors contains: "Wang, Lifan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Following our previous study of Artificial Intelligence Assisted Inversion (AIAI) of supernova analyses, we train a set of deep neural networks based on the 1D radiative transfer code TARDIS to simulate the optical spectra of Type Ia supernovae (SNe Ia) between 10 and 40 days after the explosion. The neural networks are applied to derive the mass of56Ni in velocity ranges above the photosphere for a sample of 124 well-observed SNe Ia in the TARDIS model context. A subset of the SNe have multi-epoch observations for which the decay of the radioactive56Ni can be used to test the AIAI quantitatively. The56Ni mass derived from AIAI using the observed spectra as inputs for this subset agrees with the radioactive decay rate of56Ni. AIAI reveals that a spectral signature near 3890 Å is related to the Niii4067Å line, and the56Ni mass deduced from AIAI is found to be correlated with the light-curve shapes of SNe Ia, with SNe Ia with broader light curves showing larger56Ni mass in the envelope above the photosphere. AIAI enables spectral data of SNe to be quantitatively analyzed under theoretical frameworks based on well-defined physical assumptions.

     
    more » « less
  2. ABSTRACT

    Type Ia supernovae (SNe Ia) arise from the thermonuclear explosion in binary systems involving carbon–oxygen white dwarfs (WDs). The pathway of WDs acquiring mass may produce circumstellar material (CSM). Observing SNe Ia within a few hours to a few days after the explosion can provide insight into the nature of CSM relating to the progenitor systems. In this paper, we propose a CSM model to investigate the effect of ejecta−CSM interaction on the early-time multiband light curves of SNe Ia. By varying the mass-loss history of the progenitor system, we apply the ejecta−CSM interaction model to fit the optical and ultraviolet (UV) photometric data of eight SNe Ia with early excess. The photometric data of SNe Ia in our sample can be well matched by our CSM model except for the UV-band light curve of iPTF14atg, indicating its early excess may not be due to the ejecta−CSM interaction. Meanwhile, the CSM interaction can generate synchrotron radiation from relativistic electrons in the shocked gas, making radio observations a distinctive probe of CSM. The radio luminosity based on our models suggests that positive detection of the radio signal is only possible within a few days after the explosion at higher radio frequencies (e.g. ∼250 GHz); at lower frequencies (e.g. ∼1.5 GHz), the detection is difficult. These models lead us to conclude that a multimessenger approach that involves UV, optical, and radio observations of SNe Ia a few days past explosion is needed to address many of the outstanding questions concerning the progenitor systems of SNe Ia.

     
    more » « less
    Free, publicly-accessible full text available August 9, 2024
  3. Abstract

    Accurate distance determination to astrophysical objects is essential for the understanding of their intrinsic brightness and size. The distance to SN 1987A has been previously measured by the expanding photosphere method and by using the angular size of the circumstellar rings with absolute sizes derived from light curves of narrow UV emission lines, with reported distances ranging from 46.77 to 55 kpc. In this study, we independently determined the distance to SN 1987A using photometry and imaging polarimetry observations of AT 2019xis, a light echo of SN 1987A, by adopting a radiative transfer model of the light echo developed in Ding et al. We obtained distances to SN 1987A in the range from 49.09 ± 2.16 kpc to 59.39 ± 3.27 kpc, depending on the interstellar polarization and extinction corrections, which are consistent with the literature values. This study demonstrates the potential of using light echoes as a tool for distance determination to astrophysical objects in the Milky Way, up to kiloparsec level scales.

     
    more » « less
    Free, publicly-accessible full text available May 1, 2024
  4. In this study, we analyzed the optical observations of a subluminous Type Ia supernova (SN Ia) 2017fzw, which exhibited high photospheric velocity (HV) at B-band maximum light. The absolute B-band peak magnitude was determined to be MmaxB=−18.65±0.13 mag, similar to 91bg-like SNe Ia. An estimation of the rate of decline for the B-band light curve was determined to be Δm15(B)=1.60±0.06 mag. The spectra of SN 2017fzw were similar to those of 91bg-like SNe Ia, with prominent Ti ii and Si ii λ5972 features at early phases, gradually transitioning to spectra resembling normal (mainly HV subclass) SNe Ia at later phases, with a stronger Ca ii NIR feature. Notably, throughout all phases of observation, SN 2017fzw displayed spectral evolution characteristics that were comparable to those of HV SNe Ia, and at peak brightness, the Si ii λ6355 velocity was determined to be 13,800 ± 415 km s−1 and a more pronounced Ca ii NIR feature was also detected. Based on these findings, we classify SN 2017fzw as a transitional object with properties of both normal and 91bg-like SNe Ia, providing support for the hypothesis of a continuous distribution of supernovae between these two groups.

     
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  5. Abstract

    Image subtraction is essential for transient detection in time-domain astronomy. The point-spread function (PSF), photometric scaling, and sky background generally vary with time and across the field of view for imaging data taken with ground-based optical telescopes. Image subtraction algorithms need to match these variations for the detection of flux variability. An algorithm that can be fully parallelized is highly desirable for future time-domain surveys. Here we introduce the saccadic fast Fourier transform (SFFT) algorithm we developed for image differencing. SFFT uses aδ-function basis for kernel decomposition, and the image subtraction is performed in Fourier space. This brings about a remarkable improvement in computational performance of about an order of magnitude compared to other published image subtraction codes. SFFT can accommodate the spatial variations in wide-field imaging data, including PSF, photometric scaling, and sky background. However, the flexibility of theδ-function basis may also make it more prone to overfitting. The algorithm has been tested extensively on real astronomical data taken by a variety of telescopes. Moreover, the SFFT code allows for the spatial variations of the PSF and sky background to be fitted by spline functions.

     
    more » « less
  6. Abstract

    We present six epochs of optical spectropolarimetry of the Type II supernova (SN) 2023ixf ranging from ∼2 to 15 days after the explosion. Polarimetry was obtained with the Kast double spectrograph on the Shane 3 m telescope at Lick Observatory, representing the earliest such observations ever captured for an SN. We observe a high continuum polarizationpcont≈ 1% on days +1.4 and +2.5 before dropping to 0.5% on day +3.5, persisting at that level up to day +14.5. Remarkably, this change coincides temporally with the disappearance of highly ionized “flash” features. The decrease of the continuum polarization is accompanied by a ∼70° rotation of the polarization position angle (PA) as seen across the continuum. The early evolution of the polarization may indicate different geometric configurations of the electron-scattering atmosphere as seen before and after the disappearance of the emission lines associated with highly ionized species (e.g., Heii, Civ, and Niii), which are likely produced by elevated mass loss shortly prior to the SN explosion. We interpret the rapid change of polarization and PA from days +2.5 to +4.5 as the time when the SN ejecta emerge from the dense asymmetric circumstellar material (CSM). The temporal evolution of the continuum polarization and the PA is consistent with an aspherical SN explosion that exhibits a distinct geometry compared to the CSM. The rapid follow-up spectropolarimetry of SN 2023ixf during the shock ionization phase reveals an exceptionally asymmetric mass-loss process leading up to the explosion.

     
    more » « less
  7. We present a comparative study of two nearby type Ia supernovae (SNe Ia), 2018xx and 2019gbx, that exploded in NGC 4767 and MCG-02-33-017 at a distance of 48 Mpc and 60 Mpc, respectively. The B -band light curve decline rate for SN 2018xx is estimated to be 1.48 ± 0.07 mag and for SN 2019gbx it is 1.37 ± 0.07 mag. Despite the similarities in photometric evolution, quasi-bolometric luminosity, and spectroscopy between these two SNe Ia, SN 2018xx has been found to be fainter by about ∼0.38 mag in the B -band and has a lower 56 Ni yield. Their host galaxies have similar metallicities at the SN location, indicating that the differences between these two SNe Ia may be associated with the higher progenitor metallicity of SN 2018xx. Further inspection of the near-maximum-light spectra has revealed that SN 2018xx has relatively strong absorption features near 4300 Å relative to SN 2019gbx. The application of the code TARDIS fitting to the above features indicates that the absorption features near 4300 Å appear to be related to not only Fe  II /Mg  II abundance but possibly to the other element abundances as well. Moreover, SN 2018xx shows a weaker carbon absorption at earlier times, which is also consistent with higher ejecta metallicity. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  8. Abstract

    We investigate the potential of using a sample of very high-redshift (2 ≲z≲ 6) (VHZ) Type Ia supernovae (SNe Ia) attainable by JWST on constraining cosmological parameters. At such high redshifts, the age of the universe is young enough that the VHZ SN Ia sample comprises the very first SNe Ia of the universe, with progenitors among the very first generation of low-mass stars that the universe has made. We show that the VHZ SNe Ia can be used to disentangle systematic effects due to the luminosity distance evolution with redshifts intrinsic to SN Ia standardization. Assuming that the systematic evolution can be described by a linear or logarithmic formula, we found that the coefficients of this dependence can be determined accurately and decoupled from cosmological models. Systematic evolution as large as 0.15 mag and 0.45 mag out toz= 5 can be robustly separated from popular cosmological models for linear and logarithmic evolution, respectively. The VHZ SNe Ia will lay the foundation for quantifying the systematic redshift evolution of SN Ia luminosity distance scales. When combined with SN Ia surveys at comparatively lower redshifts, the VHZ SNe Ia allow for the precise measurement of the history of the expansion of the universe fromz∼ 0 to the epoch approaching reionization.

     
    more » « less
  9. Abstract Observational signatures of the circumstellar material (CSM) around Type Ia supernovae (SNe Ia) provide a unique perspective on their progenitor systems. The pre-supernova evolution of the SN progenitors may naturally eject CSM in most of the popular scenarios of SN Ia explosions. In this study, we investigate the influence of dust scattering on the light curves and polarizations of SNe Ia. A Monte Carlo method is constructed to numerically solve the process of radiative transfer through the CSM. Three types of geometric distributions of the CSM are considered: spherical shell, axisymmetric disk, and axisymmetric shell. We show that both the distance of the dust from the SN and the geometric distribution of the dust affect the light curve and color evolutions of SN. We found that the geometric location of the hypothetical circumstellar dust may not be reliably constrained based on photometric data alone, even for the best observed cases such as SN 2006X and SN 2014J, due to the degeneracy of CSM parameters. Our model results show that a time sequence of broadband polarimetry with appropriate time coverage from a month to about one year after explosion can provide unambiguous limits on the presence of circumstellar dust around SNe Ia. 
    more » « less
  10. Abstract We present a data-driven method based on long short-term memory (LSTM) neural networks to analyze spectral time series of Type Ia supernovae (SNe Ia). The data set includes 3091 spectra from 361 individual SNe Ia. The method allows for accurate reconstruction of the spectral sequence of an SN Ia based on a single observed spectrum around maximum light. The precision of the spectral reconstruction increases with more spectral time coverages, but the significant benefit of multiple epoch data at around optical maximum is only evident for observations separated by more than a week. The method shows great power in extracting the spectral information of SNe Ia and suggests that the most critical information of an SN Ia can be derived from a single spectrum around the optical maximum. The algorithm we have developed is important for the planning of spectroscopic follow-up observations of future SN surveys with the LSST/Rubin and WFIRST/Roman telescopes. 
    more » « less